上述模运算多用于程序编写,举一例来说明模运算的原理:
Turbo Pascal对mod的解释是这样的:
A Mod
(div含义为整除)本文以c++语言为载体,对基本的模运算应用进行了分析和程序设计,以理论和实际相结合的方法向大家介绍模运算的基本应用。
基本概念
给定一个正整数
,任意一个整数,一定存在等式;其中 k、r是整数,且
,称 为 除以 的商,为 除以 的余数。对于正整数和整数 , ,定义如下运算:取模运算:
,表示a除以p的余数。模p加法:
,其结果是a+b算术和除以p的余数,也就是说,,则。模p减法:
,其结果是算术差除以p的余数。模p乘法:
,其结果是算术乘法除以p的余数。说明:
1.同余式:正整数a,b对p取模,它们的余数相同,记做
p或者。2. n % p得到结果的正负由被除数n决定,与p无关。例如:
(在java、C/C++中%是取余,在python是模运算,此处%按取余处理)。基本性质
(1)若
,则。例如 ,(2)
意味(3)对称性:
等价于(4)传递性:若
且 ,则运算规则
模运算与基本四则运算有些相似,但是除法例外。其规则如下:
(1) (2)(3) (4)结合律:
交换律:
(7)(8)分配律:
(9)重要定理:
若
,则对于任意的c,都有(10)若
,则对于任意的,都有(11)若
,则(12)判别奇偶数
奇偶数的判别是模运算最基本的应用,也非常简单。已知一个整数n对2取模,如果余数为0,则表示n为偶数,否则n为奇数。
C++实现功能函数:
判别素数
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如
是质数,而 则不是,后者称为合成数或合数。判断某个自然数是否是素数最常用的方法就是试除法:用比该自然数的平方根小的正整数去除这个自然数,若该自然数能被整除,则说明其非素数。
实现功能函数:/*函数名:IsPrime
函数功能:判别自然数n是否为素数。
输入值:int n,自然数n
返回值:bool,若自然数n是素数,返回true,否则返回false*/
#include
bool IsPrime(unsigned n)
{
unsigned maxFactor = sqrt(n); //n的最大因子
for
{
if (!(n % i)) //n能被i整除,则说明n非素数
return false;
}
return true;
}
最大公约数
求最大公约数最常见的方法是欧几里德算法(又称辗转相除法),其计算原理依赖于定理:
证明:a可以表示成
,则假设d是a,b的一个公约数,则有
,而,因此因此d是
的公约数假设d 是
的公约数,则,但是因此d也是(a,b)的公约数
因此
和的公约数是一样的,其最大公约数也必然相等,得证。C++实现功能函数:
/*函数功能:利用欧几里德算法,采用递归方式,求两个自然数的最大公约数
函数名:Gcd
输入值:
unsigned int a,自然数a
unsigned int b,自然数b
返回值:unsigned int,两个自然数的最大公约数*/
unsigned Gcd(unsigned a , unsigned b)
{
if (b)
return Gcd(b , a % b);
return a;
}
/*函数功能:利用欧几里德算法,采用迭代方式,求两个自然数的最大公约数
函数名:Gcd
输入值:
unsigned int a,自然数a
unsigned int b,自然数b
返回值:
unsigned int,两个自然数的最大公约数*/
unsigned Gcd(unsigned a , unsigned b)
{
unsigned temp;
while (b)
{
;}
return a;
}
模幂运算
利用模运算的运算规则,我们可以使某些计算得到简化。例如,我们想知道3333^5555的末位是什么。很明显不可能直接把
的结果计算出来,那样太大了。但我们想要确定的是,所以问题就简化了。根据运算规则(4)
,我们知道。由于。根据运算规则(3)
,由于,我们得到。
计算完毕。
利用这些规则我们可以有效地计算
。简单的算法是将result初始化为1,然后重复将result乘以X,每次乘法之后应用%运算符(这样使得result的值变小,以免溢出),执行N次相乘后,result就是我们要找的答案。这样对于较小的N值来说,实现是合理的,但是当N的值很大时,需要计算很长时间,是不切实际的。下面的结论可以得到一种更好的算法。
如果N是偶数,那么
;如果N是奇数,那么
;其中[N]是指小于或等于N的最大整数。
C++实现功能函数:
/*函数功能:利用模运算规则,采用递归方式,计算
函数名:PowerMod
输入值:
unsigned int x,底数x
unsigned int n,指数n
unsigned int p,模p
返回值:unsigned int,X^N(% P)的结果*/
unsigned PowerMod(unsigned x , unsigned n , unsigned p)
{
if (!n)
return 1;
unsigned temp = PowerMod((x * x) % p ,
, p); //递归计算(X*X)^[N/2]if (n & 1) //判断n的奇偶性
temp = (temp * x) % p;
return temp;
}
孙子问题(中国剩余定理)
在我国古代算书《孙子算经》中有这样一个问题:
“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”意思是,“一个数除以3余2,除以5余3,除以7余2.求适合这个条件的最小数。”
这个问题称为“孙子问题”。关于孙子问题的一般解法,国际上称为“中国剩余定理”。
我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:
三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知。
"正半月"暗指15。"除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。
根据剩余定理,可以把此种解法推广到有n(n为自然数)个除数对应n个余数,求最小被除数的情况。输入n个除数(除数不能互相整除)和对应的余数,计算机将输出最小被除数。
C++实现功能函数:
/*函数名:ResidueTheorem
函数功能:运用剩余定理,解决推广了的孙子问题。通过给定n个除数(除数不能互相整除)和对应的余数,返回最小被除数
输入值:
unsigned int devisor[],存储了n个除数的数组
unsigned int remainder[],存储了n个余数的数组
int length,数组的长度
返回值:
unsigned int,最小被除数*/
unsigned ResidueTheorem(const unsigned devisor[] , const unsigned remainder[] , int length)
{
unsigned product = 1; //所有除数之乘积
for (int
; iproduct *= devisor[i];//公倍数数组,表示除该元素(除数)之外其他除数的公倍数
unsigned int *commonMultiple = new unsigned int(length);
for (int i=0 ; i
commonMultiple[i] = product / devisor[i];
unsigned dividend = 0; //被除数,就是函数要返回的值
for (int i=0 ; i
{
unsigned tempMul = commonMultiple[i];//按照剩余理论计算合适的公倍数,使得tempMul % devisor[i] == 1
while (tempMul % devisor[i] != 1)
tempMul += commonMultiple[i];
dividend += tempMul * remainder[i]; //用本除数得到的余数乘以其他除数的公倍数
}
delete []commonMultiple;
return (dividend % product); //返回最小被除数}凯撒密码
}
凯撒密码(caeser)是罗马扩张时期朱利斯o凯撒(Julius Caesar)创造的,用于加密通过信使传递的作战命令。
它将字母表中的字母移动一定位置而实现加密。注意26个字母循环使用,z的后面可以看成是a。
例如,当密匙为
,即向后移动3位时,若明文为”How are you!”,则密文为”Krz duh btx!”。凯撒密码的加密算法极其简单。其加密过程如下:
在这里,可以做一约定:明文记为m,密文记为c,加密变换记为E(key1,m)(其中key1为密钥),
解密变换记为D(key2,m)(key2为解密密钥)(在这里
,不妨记为key)。凯撒密码的加密过程可记为如下一个变换:
(其中n为基本字符个数)同样,解密过程可表示为:
(其中n为基本字符个数)C++实现功能函数:
/*函数功能:使用凯撒密码原理,对明文进行加密,返回密文
函数名:Encrypt
输入值:
const char proclaimedInWriting[],存储了明文的字符串
char cryptograph[],用来存储密文的字符串
int keyey,加密密匙,正数表示后移,负数表示前移
返回值:无返回值,但是要将新的密文字符串返回*/
#include
void Encrypt(const char proclaimedInWriting[] , char cryptograph[] , int key)
{
const int NUM = 26; //字母个数
int len = strlen(proclaimedInWriting);
for (int i=0 ; i
{
if (proclaimedInWriting[i] >= 'a' && proclaimedInWriting[i] <= 'z')//明码是大写字母,则密码也为大写字母
cryptograph[i] = (proclaimedInWriting[i] - 'a' + key) % NUM + 'a';
else if (proclaimedInWriting[i] >= 'A' && proclaimedInWriting[i] <= 'Z')//明码是小写字母,则密码也为小写字母
cryptograph[i] = (proclaimedInWriting[i] - 'A' + key) % NUM + 'A';
else//明码不是字母,则密码与明码相同
cryptograph[i] = proclaimedInWriting[i];
}
cryptograph[len] = '\0';
}
/*函数功能:使用凯撒密码原理,对密文进行解密,返回明文
函数名:Decode
输入值:
char proclaimedInWriting[],用来存储明文的字符串
const char cryptograph[],存储了密文的字符串
int keyey,解密密匙,正数表示前移,负数表示后移(与加密相反)
返回值:无返回值,但是要将新的明文字符串返回*/
#include
void Decode(const char cryptograph[] , char proclaimedInWriting[] , int key)
{
const int NUM = 26; //字母个数
int len = strlen(cryptograph);
for (int i=0 ; i
{
if (cryptograph[i] >= 'a' && cryptograph[i] <= 'z')//密码是大写字母,则明码也为大写字母,为防止出现负数,转换时要加个NUM
proclaimedInWriting[i] = (cryptograph[i] - 'a' - key + NUM) % NUM + 'a';
else if (cryptograph[i] >= 'A' && cryptograph[i] <= 'Z')//密码是小写字母,则明码也为小写字母
proclaimedInWriting[i] = (cryptograph[i] - 'A' - key + NUM) % NUM + 'A';
else//密码不是字母,则明码与密码相同
proclaimedInWriting[i] = cryptograph[i];
}
proclaimedInWriting[len] = '\0';
}
总结
模运算及其简单应用差不多就这么多了,其实模运算在数学及计算机领域的应用非常广泛,这些只是一些最最基本的情形,希望能够起到一个抛砖引玉的作用,让更多的人关注模运算,并及其应用到更广阔的领域中。
Copyright 2023 fuwu029.com赣ICP备2022008914号-4