无偏估计

无偏估计是参数的样本估计量的期望值等于参数的真实值。估计量的数学期望等于被估计参数,则称此为无偏估计。
基础资料
  • 外文名:unbiased estimate
  • 应用学科统计学应用:测验分数统计
  • 相应概念:无偏性
  • 包含:无偏估计、渐近无偏估计
  • 简介

    定义

    无偏估计

    无偏估计量,数学期望等于被估计的量的统计估计量。

    设^θ(X1,X2,…,Xn)是θ的估计量,若E(^θ)=θ,对一切θ∈Θ,则称^θ为θ的无偏估计量,否则称为θ的有偏估计量。

    无偏估计量的定义是:设(ξ∧)是ξ的一个估计量,若E(ξ∧)=ξ ,则称ξ∧是ξ的无偏估计量 下面说明题目中的四个估计量都是λ的无偏估计量。因为ξ8、ξ8、ξ8 都是取自参数为λ的泊松总体的样本。

    无偏性

    对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。也就是说,尽管在一次抽样中得到的估计值不一定恰好等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,换句话说,希望估计量的均值(数学期望)应等于未知参数的真值,这就是所谓无偏性(Unbiasedness)的要求。

    举例

    下面说明题目中的四个估计量都是λ的无偏估计量。首先,因为ξ1、ξ2、ξ3 都是取自参数为λ的泊松总体的样本,独立同分布,所以它们的期望和方差都是λ ,则

    (1)无偏性E(λ1∧)= E(ξ1)= λE(λ2∧)= E[(ξ1+ξ2)/2]= (λ+λ)/2 = λE(λ3∧)= E[(ξ1+2*ξ2)/3]= (λ+2λ)/3 = λE(λ4∧)= E[(ξ1+ξ2+ξ3)/3]= (λ+λ+λ)/3 = λ

    (2)有效性,即最小方差性D(λ1∧)= D(ξ1)= λD(λ2∧)= D[(ξ1+ξ2)/2]= [D(ξ1)+D(ξ2)]/4= (λ+λ)/4 = λ/2D(λ3∧)= D[(ξ1+2*ξ2)/2]= [D(ξ1)+4D(ξ2)]/9= (λ+4λ)/9 = 5λ/9D(λ4∧)= D[(ξ1+ξ2+ξ3)/3]= [D(ξ1+ξ2+ξ3)]/9 =(λ+λ+λ)/9 = λ/3其中 D(λ4∧)= λ/3 最小,所以无偏估计量 λ4∧最有效。

    首页
    概念
    #贵族
    最新入驻
    贾科莫·普契尼
    Caroline Lufkin
    翁建宇
    相关阅读
    有向线段
    内容词条·5307人浏览
    遥控技术
    内容词条·4615人浏览
    CBD商务圈
    内容词条·5975人浏览
    公路改建工程
    内容词条·1849人浏览
    冰帽
    内容词条·192人浏览
    核电设备
    内容词条·423人浏览
    • 网站地图
    • |

    Copyright 2023 fuwu029.com赣ICP备2022008914号-4